Course curriculum

    1. How to use this course

    2. Before we begin...

    3. Course Overview and Structure

    1. Lesson 1: Introduction to Data Analytics

    2. Lesson 2: Data Analytics Tools

    3. Lesson 3: Installation and Configuration of Data Analytics Tools

    4. Lesson 4: RStudio IDE

    5. Lesson 5: Basics of R - Data and Information

    6. Lesson 6: Basics of R - Executable Codes and Comments

    7. Lesson 7: Basics of R - Variables and Arithmetic Operators

    8. Lesson 8: Basics of R - Logical Operators

    9. Lesson 9: Basics of R - Vectors

    10. Lesson 10: Data Types in R - Lists

    11. Lesson 11: Data Types in R - Matrix

    12. Lesson 12: Data Types in R - Data frames

    13. Lesson 13: Subsetting Objects in R -Vectors

    14. Lesson 14: Subsetting Objects in R - List

    15. Lesson 15: Subsetting Objects in R - Matrix

    16. Lesson 16: Subsetting Objects in R - Data frame

    17. Lesson 17: Data Types - Factors

    18. Lesson 18: Data types -Dates

    19. Lesson 19: Functions in R

    20. Week 1 Assignment

    21. Weekly Feedback - 1

    22. Week 1 Saturday LIVE Session

    23. Week 1 Sunday LIVE Session

    1. Curriculum Overview

    2. Lesson 1: Importing data from tsv using base R function, read.table()

    3. Lesson 2: Import CSV data using base R function, read.csv()

    4. Lesson 3: Installing Packages in R

    5. Lesson 4: Importing data from csv using readr package function, read_csv()

    6. Lesson 5: Importing data from MS Excel Using readxl package function, read_excel()

    7. Lesson 6: Importing data from MS Excel Worksheet Using readxl package function, read_xls()

    8. Lesson 7: Importing data from MS Excel Workbook Using readxl package function, read_xlsx()

    9. Lesson 8: Importing data from MS Excel Workbook Using readxl package function, read_xlsx() Extended

    10. Weekly Feedback - 2

    11. Data files

    1. Lesson 1: Saving Data into R Data Format: RDS and RDATA

    2. Lesson 2: Exporting data to different formats - CSV

    3. Lesson 3: Exporting data to different formats - MS Excel

    4. Weekly Feedback - 4

    1. Lesson 1: Review of Subsetting in R using $, []

    2. Lesson 2: Review of Subsetting in R using $, [] using Logical statement

    3. Lesson 3: Introduction to dplyr, tidyr, and tidyverse

    4. Lesson 4: Introduction to tibbles and why they are useful - Part 1

    5. Lesson 5: Introduction to tibbles and why they are useful - Part 2

    6. Lesson 6: Introduction to tibbles and the Pipe operators

    7. Lesson 7: Data manipulation with dplyr package function, select() - Part 1

    8. Lesson 8: Data manipulation with dplyr package function, select() - Part 2

    9. Lesson 9: Data manipulation with dplyr package function, select() - Part 3

    10. Lesson 10: Data manipulation with dplyr packagefunction, select(), rename()

    11. Lesson 11: Data manipulation with dplyr package function, filter() Part 1

    12. Lesson 12: Data manipulation with dplyr - filter() Part 2

    13. Lesson 13: Data manipulation with dplyr package function, arrange()

    14. Lesson 14: Data manipulation with dplyr package function, mutate()

    15. Lesson 15: Data manipulation with dplyr package function, mutate(), if_else()

    16. Lesson 16: Data manipulation with dplyr package function, mutate(), case_when()

    17. Lesson 17: Joining data frames - Intro, bind_rows()

    18. Lesson 18: Joining data frames - Adding rows with non-identical sets of columns

    19. Lesson 19: Joining data frames - Adding rows with columns in a different order

    20. Lesson 20: Joining data frames - Adding rows with different column names

    21. Lesson 21: Joining data frames - Combining Data Frames Horizontally by Columns

    22. Lesson 22: Joining data frames - Combining Data Frames Horizontally in R, merge(), left join

    23. Lesson 23: Joining data frames - Combining Data Frames Horizontally in R, merge(), Right join

    24. Lesson 24: Joining data frames - Combining Data Frames Horizontally in R, merge(), Full join, Inner join, and diff col names

    25. Lesson 25: Joining data frames - Combining Data Frames Horizontally in R, using dplyr functions 1

    26. Lesson 26: Joining data frames - Combining Data Frames Horizontally in R, using dplyr functions 2

    27. Download files

    28. Weekly Feedback - 4

    29. Week 4 Weekend LIVE Class (Saturday, 03-08-2024)

    30. Week 4 Weekend LIVE Class 1 (Sunday, 04-08-2024)

    31. Week 4 Weekend LIVE Class 2 (Sunday 04-08-2024)

    1. Lesson 1: Principles of Data Visualization - Importance of data visualization

    2. Lesson 2: Principles of Data Visualization - Types of charts and when to use them

    3. Lesson 3: Creating visualizations using ggplot2 - Aesthetic mappings

    4. Lesson 4: Creating visualizations using ggplot2 - Geometric objects (Points)

    5. Lesson 5: Creating visualizations using ggplot2 - Color, size, shape and other aesthetic attributes

    6. Lesson 6: Creating visualizations using ggplot2 - Geometry objects (Histogram)

    7. Lesson 7: Creating visualizations using ggplot2 - Geometry objects (Line)

    8. Lesson 8: Creating visualizations using ggplot2 - Geometry objects (Area)

    9. Lesson 9: Creating visualizations using ggplot2 - Geometry objects (Bar)

    10. Lesson 10: Creating visualizations using ggplot2 - Saving Plot Output as Variable

    11. Lesson 11: Creating visualizations using ggplot2 - Saving Plot Output as File

    12. Lesson 12: Creating visualizations using ggplot2 - Plot Labels

    13. Lesson 13: Creating visualizations using ggplot2 - Themes

    14. Lesson 14: Creating visualizations using ggplot2 - Legends

    15. Lesson 15: Creating visualizations using ggplot2 - Facets (splits a plot into subplots)

    16. Weekly Feedback - 5

    17. Week 5 Downloads

    18. Pre-week LIVE Recording (08-11-2024)

    19. Weekend (Saturday) LIVE Hands-on Walkthrough on Data Manipulation and Visualization

    20. Weekend (Sunday) LIVE Class - Project 1 Walkthrough on Data Manipulation and Visualization

About this course

  • Free
  • 176 lessons
  • 42.5 hours of video content

Discover your potential, starting today